Part Number Hot Search : 
MAN8410 24802 29DL163 ASZTMTS HVL133A 5360F7LC 22A2K 67L040
Product Description
Full Text Search
 

To Download IRFB3407ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  battery management  high speed power switching  hard switched and high frequency circuits hexfet   power mosfet gds gate drain source s d g to-220ab IRFB3407ZPBF d s d g v dss 75v r ds(on) typ. 5.0m i d (package limited) 120a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.65 r cs case-to-sink, flat greased surface , to-220 0.50 ??? c/w r ja junction-to-ambient, to-220 ??? 62 see fig. 14, 15, 21a, 21b 140 230 6.7 -55 to + 175 20 1.5 10lbf  in (1.1n  m) max. 122  86 488 120 c a 300 
     
  
     ordering information form quantity IRFB3407ZPBF to-220 tube 50 IRFB3407ZPBF base part number package type standard pack complete part number
    
  
     
 s d g    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 120a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.   repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.050mh r g = 25 , i as = 75a, v gs =10v. part not recommended for use above this value.  i sd 75a, di/dt 1570a/ s, v dd v (br)dss , t j 175c.   pulse width 400 s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  r is measured at t j approximately 90c. static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 75 ??? ??? v / / i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 320 ??? ??? s q g total gate charge ??? 79 110 q gs gate-to-source charge ??? 19 ??? q gd gate-to-drain ("miller") charge ??? 24 ??? q sync total gate charge sync. (q g - q gd ) ??? 55 ??? t d(on) turn-on delay time ??? 15 ??? t r rise time ??? 64 ??? t d(off) turn-off delay time ??? 38 ??? t f fall time ??? 65 ??? c iss input capacitance ??? 4750 ??? c oss output capacitance ??? 420 ??? c rss reverse transfer capacitance ??? 190 ??? c oss eff. (er) effective output capacitance (energy related) ??? 440 ??? c oss eff. (tr) effective output capacitance (time related) ??? 410 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 120 (body diode) i sm pulsed source current ??? ??? 488 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 33 50 ns t j = 25c v r = 64v, ??? 39 59 t j = 125c i f = 75a q rr reverse recovery charge ??? 42 63 nc t j = 25c di/dt = 100a/ s  ??? 56 84 t j = 125c i rrm reverse recovery current ??? 2.2 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 75a r g = 2.6  v dd = 49v i d = 75a, v ds =0v, v gs = 10v t j = 25c, i s = 75a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 75a  v ds = v gs , i d = 150 a v ds = 75v, v gs = 0v v ds = 75v, v gs = 0v, t j = 125c mosfet symbol showing the v ds = 38v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 60v  v gs = 0v, v ds = 0v to 60v  conditions v ds = 50v, i d = 75a i d = 75a v gs = 20v v gs = -20v a ns pf nc
    
  
     
 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60 s pulse width 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 72a v gs = 10v 0 102030405060708090 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 60v v ds = 38v v ds = 15v i d = 72a
    
  
     
 fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 65 70 75 80 85 90 95 100 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma 20 30 40 50 60 70 80 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 e n e r g y ( j ) 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec dc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 15a 26a bottom 75a 0 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 i d , d r a i n c u r r e n t ( a ) limited by package
    
  
     
 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 21a, 21b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.1164 0.000088 0.3009 0.001312 0.2313 0.009191 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 25 50 75 100 125 150 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 75a
    
  
     
   
!" #$  %$ fig 16. threshold voltage vs. temperature   &
$!' #$  %$ 
 
!" #$  %$   &
$!' #$  %$ -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 250 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 5 10 15 20 i r r ( a ) i f = 48a v r = 64v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 20 100 180 260 340 420 q r r ( a ) i f = 48a v r = 64v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 5 10 15 20 i r r ( a ) i f = 72a v r = 64v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 20 100 180 260 340 420 q r r ( a ) i f = 72a v r = 64v t j = 25c t j = 125c
 (   
  
     
 fig 22a. switching time test circuit fig 22b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1 s duty factor < 0.1% v dd v ds l d d.u.t + - fig 21b. unclamped inductive waveforms fig 21a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 23a. gate charge test circuit fig 23b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 20. )*+
$
$ %$#! " for n-channel hexfet   power mosfets 1k vcc dut 0 l 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period ,    
     , + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&# 

    
 -   
  
     
 to-220ab packages are not recommended for surface mount application.  
         
     
     
     

 

 
  e xample: t his is an irf b 4310gpbf note: "p" in as s embly line pos ition indicates "l ead - f r ee" int ernat ional part number rect if ier lot code as s e mb l y logo y= las t digit of dat e code : ww= work we e k x= fact ory code note: "g" s uffix in part number indicates "h alogen - f r ee" cal e ndar ye ar   .&" $/ $0&'"$
!
1 2&3 

 
 # # 4%%
%

 % n/a (per je de c j-s t d-020d ??? ) rohs compliant (per jedec jesd47f ??? guidelines) yes qualification information ? industrial ?? qualification level to-220ab moisture sensitivity level 5 6" 
#$$# 7
"$
 8#7#4 4%%
%
$" 
%7% 559':" 
'# 7 7#
"$"# #" :" #)#
 
" 
 ### 
"
 
4 4
%

 %##% 5553 7 #

;0+0!#$$ 

$" #


▲Up To Search▲   

 
Price & Availability of IRFB3407ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X